Open forum meeting: Future of RHIC Upgrades

Brian A. Cole
Columbia University
October 27, 2011

The Big Picture

 We know that strong interactions are well described by the QCD Lagrangian:

$$L_{QCD} = -rac{1}{4}F^a_{\mu
u}F^{\mu
u}_a - \sum_nar{\psi}_n\left(\partial -ig\gamma^\mu A^a_\mu t_a - m_n
ight)\psi_n$$

- ⇒Perturbative limit well studied
- Nuclear collisions provide a laboratory for studying QCD outside the large Q² regime:
 - Deconfined matter (quark gluon plasma)
 - ⇒"Emergent" physics not manifest in L_{QCD}
 - ⇒ Strong coupling ⇒ AdS/QCD (?)
 - High gluon field strength, saturation
 - ⇒ Unitarity in fundamental field theory
- Only non-Abelian FT whose phase transition & multi-particle behavior we can study in lab.

QCD Thermodynamics on Lattice

Energy Density or pressure

T_{RHIC} ($\tau = 1 fm$)

- Lattice thermodynamics from hotQCD group
 - Trace anomaly (ε-3p)/T⁴, an "interaction measure"
 ⇒Strong coupling already evident near T_C (?)
- Can we observe any consequences of the increase of the (initial) temperature between RHIC and LHC?

The future of RHIC

- Some basic assumptions:
 - Planning for the future of RHIC (including upgrades) should be driven by science opportunities
 - For RHIC to have a future that science must be compelling and unique***
 - ⇒Convince DNP colleagues re: science
 - ⇒Convince funding agencies, congress, OMB, re: science
 - **⇒**Convince next generation re: science
 - Any plan must be realistic
 - ⇒Respect budget constraints
 - ⇒Respect manpower constraints (RHIC, LHC, EIC)
 - ⇒Can be accomplished within reasonable time
 - **⇒**Compatible with a future EIC

The future of RHIC

- ***What constitutes unique science @ RHIC
 - Science accessible via unique capabilities of machine
 - ⇒e.g. critical point search via lower energies
 - ⇒e.g. Cu+Au, U+U. One shot only? (precision)
 - Science accessible via unique experiment capabilities
 - Science that is unique because of physics
 - ⇒e.g. thermal direct photons @ RHIC(?)
 - ⇒e.g. quark-dominated jets @ high p_T

Thoughts

- Just because LHC can do a measurement (e.g. Y), doesn't mean that a similar measurement @ RHIC isn't compelling or unique
 - ⇒Following above example, testing Y "melting" at two different initial temperatures is compelling.

Personal Prejudices

- We are closing in on a major goal of field
 - Determination of <η/s>
 - Next step: T dependence of <η/s>
- The next major quantitative goal (IMHO):
 - $\left. -\left. \hat{q} , \left. rac{dN_g}{dy}
 ight|_{t_0}
 ight.$, i.e. jet-sQGP interactions
 - light quark vs gluon vs c, b
- Quantitative precision requires
 - Controlling initial-state effects
 - ⇒Shadowing, energy loss
 - Testing theoretical approximations
 - ⇒e.g. path length dependence
 - Clear that jets are a "game changer"

ATLAS: asymmetric dijet in Pb+Pb

Central collision, highly asymmetric dijet

RHIC Upgrades

- The (future) upgrades perspectives are very different for STAR, PHENIX
 - For long-term precision measurement program, to pursue quenching measurements with jets
 - **⇒PHENIX** needs major upgrade (sPHENIX)

Ruminations

- I think a compelling case can be made for RHIC science for ~ another decade
 - My nightmare scenario is that RHIC, LHC programs end without quantitative follow-up to discoveries
 - ⇒We cannot let that happen
- RHIC community must work together to accomplish that science
 - ⇒Success of program depends on all the parts
- The η/s story shows necessity of good theory
- Strategy for RHIC into EIC beyond my pay grade
 - But Steve has articulated viable strategy IMHO
- IMNSHO EIC is essential part of program
 - Initial state, evolution to sQGP still a mystery